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Bicritical dynamic scaling and dynamic crossover in the 
bond-diluted Glauber Ising chain 

C K Harris? 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, 
OX1 3NP. UK 

Received 6 June 1983, in final form 22 September 1983 

Abstract. We present an investigation of the dynamic critical behaviour near the percolation 
bicritical point of the I D  bond-diluted Glauber lsing model. The expected bicritical dynamic 
scaling form is rigorously established for the decay functions describing the decay of the 
equilibrium wavevector-dependent correlation function and the decay of the magnetisation 
from a (non-equilibrium) wavevector-dependent initial state. The corresponding charac- 
teristic decay times are evaluated exactly and exhibit a crossover from 'pure' to percolation 
dominated behaviour on increasing the dilution. The results in the percolation regime are 
in agreement with recent calculations in which domain boundary diffusion methods are 
applied to a wider class of kinetic king models. 

1. Introduction 

The dynamic scaling hypothesis which was first proposed by Ferrell et a1 (1967) and 
subsequently generalised by Halperin and Hohenberg (1 967), furnishes a description 
of the low frequency and long-wavelength dynamics of a system near a continuous 
phase transition. According to the hypothesis the lifetime of the kth Fourier component 
of the equilibrium-order parameter density correlation function C(  k,  t )  for a pure 
system with relaxational dynamics is assumed to obey the dynamic scaling relation 

d k )  = 5'f(k5) (1) 
where 6 is the thermal correlation length and z is the dynamic exponent. Defining a 
normalised decay function 

g ( t )  = C ( k ,  t ) lC(k ,  0) ( 2 )  
the dynamic scaling hypothesis further leads to the following scaling form for g ( t ) ,  
which incorporates (1):  

g ( k ,  5, t )  = G(t /5 ' ,  k 0 .  (3) 
The k and 5 dependences of g have been put in explicitly in the left-hand side of (3). 
The results (1) and (3) are expected to be valid at criticality, where k + 0 ,  5+m, but 
k[ is finite and arbitrary. The original dynamic scaling hypothesis describing the decay 
of order parameter fluctuations in the equilibrium ensemble at criticality has been 
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extended to other densities of the system, such as the energy density (Halperin and 
Hohenberg 1969), and to the decay of the order parameter density from a non- 
equilibrium initial state (Racz 1976, Binder 1979). 

For pure systems with various types of dynamics, scaling forms such as (1) and (3) 
have been tested experimentally and dynamic universality classes established (Hohen- 
berg and Halperin 1977). The picture is much less well developed for quenched diluted 
systems at low temperatures near the percolation threshold, which can be regarded as 
a bicritical point (Stauffer 1975). Suitable parameters describing the critical region in 
the vicinity of this point are the wavevector k,  the percolation correlation length tP, 
and the thermal correlation length of the corresponding pure one-dimensional system 
tT (Birgeneau et a1 1976). At criticality k + 0, .$, &+ but with the scaled variables 
k ( & ) " ~ ,  ( & ) " T / [ ~  remaining finite and arbitrary. V, is a static thermal exponent. 
Dynamic scaling ideas lead to the following generalisations of (1) and (3) to the 
percolation bicritical dynamics of a diluted system: 

T( k )  = 5'f( e, 5/ 5,) 
g(k, (T, 5pt  t )  = G(t/5', k 5 , 5 / 5 p )  

5 = (5T) 

(4) 

( 5 )  
where 

As 5/tP is increased from zero to infinity the system crosses over from a thermal 
regime, in which thermal fluctuations dominate the critical behaviour, to a percolation 
regime, in which the spatial decay of correlations is controlled by the percolation 
geometry. This thermal to percolation crossover produces a corresponding dynamic 
crossover in the functions g(t) and ~ ( k ) .  In this paper, the scaling form (9, and hence 
(4), is established rigorously for the equilibrium wavevector-dependent spin-spin 
correlation function decay, and the decay of the wavevector-dependent magnetisation 
from a non-equilibrium initial state, in an exactly soluble one-dimensional system-the 
bond-diluted Glauber Ising model which has a percolation bicritical point at p = 1, 
corresponding to all bonds present, and T = 0. The thermal to percolation crossover 
can then be regarded as a crossover from a pure to a percolation regime. The exponent 
vT is unity for this model and the value of the dynamic exponent z is 2. Explicit 
expressions are obtained for the lifetimes ~ ( k )  at criticality and an interpretation of 
the pure to percolation crossover is given in terms of domain boundary diffusion 
arguments. The layout of the remainder of the paper is as follows. In 5 2 single spin 
flip Glauber dynamics is developed for the disordered king chain and specialisation 
to the case of random bond dilution is then made. Formal expansions for the Laplace 
transforms of the equilibrium correlation function decay and non-equilibrium magneti- 
sation decay in terms of configuration-averaged finite chain Green functions are written 
down. A continuum version of the general theory appropriate at criticality is then 
used to establish the dynamic scaling form for the decay functions g(t) in 0 3, and the 
corresponding lifetimes T (  k )  are evaluated explicitly in 0 4. A discussion of the results 
and interpretation in terms of domain boundary diffusion arguments is given in 5 5. 

2. General theory 

The continuing popularity of kinetic Ising models in the literature is due to the fact 
that these idealised dynamical models nevertheless provide a useful description of the 
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dynamics in a variety of real systems. (For a list of applications see Kawasaki 1972.) 
An additional attractive feature of the models is their suitability for computer simulation 
experiments (see e.g. Binder 1976, 1979). Furthermore, the pure one-dimensional 
Ising system with a special type of single spin flip dynamics has been solved exactly 
(Glauber 1963, Bedeaux et a1 1970) and dynamic critical exponents have been 
obtained, and universality classes established, for pure Ising chains with more general 
single spin flip and double spin flip dynamics (Haake and Tho1 1980, Cordery et a1 
1981). 

In the single spin flip dynamics initiated for the Ising chain by Glauber (1963), all 
the information about the chain at time t is contained in the probability function 
P ( a l  . . . U,, t )  which is the probability that the spin configuration of the chain is 
{al . . . an} at time t ,  and whose evolution is governed by the master equation 

W,(aJ) is the transition rate for the process {a1 . . . U,.  . . aN}+{al . . . -a,. . . C T N }  and, 
for a chain with nearest-neighbour interactions, the spin dependence of W,( a,) is 
assumed to be a function only of the orientation of a, relative to its nearest neighbours 

and a,+l. The following equations of motion for the n-spin equal time correlation 
functions 

n 

4 / ( 1 ) ,  . . / ( n )  t t )  = -2 C (a/(l)(f) . . . a l ( n ) ( t )  W(i)[ai(i)(t)I) ( 7) 
i = l  

where ( . . . ) = Z,,, P({a} ,  t )  . . .. 
For the general nearest-neighbour bond-disordered Ising chain, with Hamiltonian 

- P X = C  Kta,at+i, a, = *1 (8) 

the most general form for W,(a,) satisfying the requirements of detailed balance and 
spin dependence only on the orientation of a, relative to its nearest neighbours is the 
following 

I 

w,(aj) =frJ(l+ 6)~,-1uJ+i){1 -i(-~;~,-i + - Y ~ ~ ~ + ~ ) ~ ~ I  

7; = tanh(KJ-l+K,)*tanh(K,-l-K,). (9) 

with 

r, and 8, are arbitrary, except that IS,l< 1, r, > 0 to ensure a positive W,(a,). The 
specialisation 6, = O  for all j in (9), made by Glauber in the pure model, leads to the 
important simplification of closed systems of equations for the n-spin equal time 
correlation functions in (7) in terms of correlations of n and fewer spins. We further 
follow previous authors in making the specialisation r, = r in (9) and absorbing the 
constant r into the definition of the timescale. 

Next we specialise to the bond-diluted Ising chain, remarking that the site-diluted 
case is related in a trivial way for a chain (see e.g. Wortis 1974). Diluting a one- 
dimensional system breaks it up into finite segments, and if bonds are removed at 
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random with probability 4, so that the K,  in (8) are distributed according to 

P ( K )  = (1 - 4 ) S ( K  - K )  + 4 S ( K ) ,  

it is easy to see that the probability that a randomly chosen site belongs to an n-bond 
segment is given by 

P( n )  = ( n  + l )q2(  1 - 4)".  (10) 

The percolation correlation function is the probability that a pair of sites separated 
by r lies in the same segment and a simple calculation yields the following result for 
the percolation correlation length 

The correlation function for Ising spins on a bond-diluted chain at finite temperature 
may also easily be calculated. The result is 

with 

5-1 = 5;' +til, ( 1 2 )  
&=[-ln(tanh 2K)I- l  is the pure I D  Ising thermal correlation length. 

Turning now to Glauber dynamics on an n-bond chain segment, with sites labelled 
from 0 to n, we obtain from (9) with 6, = 0 and r, = r absorbed into the timescale, 
the rates 

we/]= t[l - t Y d c / - l +  f l / + l ) l ,  1 f 0 ,  n 

W%l =;(I - qcocd, W [ 4 = t ( l - t 7 ( + n ~ r I - 1 )  (13) 

where y = tanh 2K, q = tanh K. 

Substituting (13) into (7), and taking the Laplace transform, we obtain the following 
equation of motion for the Laplace-transformed single-site magnetisation @,( s) 

where the n-bond segment Green function 6j;l'Cs) satisfies the equation 

(s + 1 - y ) d i / q s )  -4y( e::;/, (s) + d:::,. (s) - 26j;l'(s)) = 6,,,, 

( s  + 1 - q)d;j (s) - q( di;.'(s) - 6%) ( s ) )  = 601, 

( s +  1 - q)dy(s) - q(6v!l/ ,  (s) - d!$(s)) = 6",.. 

l s l s n - 1  
(15) 

subject to the boundary conditions 

(16) 

6!;'(s) is zero if 1 or I '  are outside the range 0 to n. We consider now the ith site 
of a bond-diluted Ising chain with ensemble-averaged initial condition q , ( O )  for each 
bond configuration. For those bond configurations in which i is the Ith site of an 
n-bond segment, we obtain from (14), 

n 

4:w = i ' = O  c d!",-/+,,(O). (17) 
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Configuration averaging (17) over all bond configurations yields the following: 

P( n) is given by (10). Defining the Fourier transform 

we obtain from (18), using ( lo) ,  
oc 

G ( k , s ) =  C q2(1-q)" dj;t'(s) exp[-ik(l-l')]q(k,O). 
n = O  1=0 I'=O 

Then the Laplace transform of the decay function for the non-equilibrium k-dependent 
magnetisation decay g , (? )  = q(  k,  t ) / q (  k ,  0) is given by 

5 n n  

im(s) = C q2(1 - 4 ) "  C C dj;t'(s) exp[-ik(/- 1 ' ) ~  (19) 

We next derive a corresponding result for the decay function of the wavevector- 
dependent time-delayed two-spin correlation function in equilibrium. The general 
two-spin time-dependent correlation function is given by 

n =O I=O I'=O 

C J t ' ,  t )  = ( a r ( t + t ' ) U ' r * ( t ' ) )  

where 

( .  . . >=  p ( { ~ ( t + t ' ) , ~ ' ( t ' ) } ,  t ' ) .  . . . 
{U. U') 

P ( { u ( ~ +  t ' ) ,  ~ ' ( t ' ) } ,  t') in (20) is the probability that the spin configuration of the 
system is {U'} at time t' and {U} at time r +  t ' .  In equilibrium CIIJ(t', t )  is independent 
of t' and is abbreviated to C,,.(t). We show in appendix 1 that the result corresponding 
to (14) for Cl18(s) on an n-bond segment is 

&s) = ~ ; ; t " ( s ) v l 1 ' - I " l ,  O s  1, 1 ' s  n 
/ " = O  

= 0 otherwise. (21) 

Using (21) the following result for the configuration average of e,,(s) on the bond- 
disordered chain may easily be obtained (cf derivation of (17)): 

with 

p = i - j .  

We notice that configuration averaging restores the translational invariance of the 
bond-disordered correlation function. Taking the Fourier transform 

7 d(k, S I  = E  exp(-ikp)Cp(s) 
P 
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of (22) and rearranging yields the result 
a 

c ( k , s ) = 2  cos(kp) 2 (1-q)"q'"fP G!F)(S)T'~ ' -~-~ '  
p = o  f l = p  I = O  f ' = O  

= &(S)C(k, 0 )  (23) 

where &(s) is the Laplace transform of the decay function defined in (2). For 
non-exponential decays g ( t )  the definition of a lifetime is somewhat arbitrary. We 
shall use the simple and widely used definition 

T = J  g(t)dt .  
0 

Then 

T i = i i ( O ) ,  i=m,c .  (25) 

Equations (15) and (16) may readily be solved to obtain the segment Green function 
G{F)(s) .  On substituting the result into the expressions for &(s)  ((19) and (23) for 
i = m, c respectively) we find that the sums over I ,  I '  and p may be evaluated explicitly 
and we can thus obtain the exact results, valid at arbitrary dilution and temperature, 
for g i ( s ) ,  and hence for the lifetimes T~ through (25), in terms of a sum over n. This 
procedure is not carried out here, since we are interested in the critical limit 4'0, 
T 4 0 ,  k + 0, where a simpler continuum formulation of the theory of the present 
section is appropriate. This leads directly to the scaling form (5) for the decay functions 
si(?) and to closed-form expressions for the characteristic times T ~ .  

3. Criticality and the continuum approach 

At criticality, the three relevant lengths in the system, tP, tT and the wavelength A all 
diverge, while the unit lattice spacing becomes irrelevant. The scaled variables l= k& 
and 4 = &/(p remain finite and arbitrary at criticality. We define the following scaled 
variables 

We further define a magnetisation density 

Making these changes of variable in (15) and (16), letting &+CO, and using the results 

lim (1 - y )  = 1/25:, lim (1-7)=1/& 
5r-m A-= 

we obtain 

(2p+1)G'L'(y, y ' ;  p ) - ( a 2 / a y 2 ) 6 ' L ' ( y ,  y'; p)=2S(y-y ' ) ,  O < y , y ' < L  (28) 
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with 
& y o ,  y‘; p )  - ( a / a y ) d y O ,  y’; p )  = 0 

W ( L ,  y’; p )  +(a/ay)d‘L’(L, y’;  p )  = 0 
and 

d y y ,  y‘; p )  = t;’d:;t’(s) (cf 27). (30) 

Similarly using (30), and the result that lim,,otp= l / q  from (11) equations (19) and 
(23) become 

and 

where 

i i (p> = t + i i ( s ) ,  i=m,c .  (33) 

The static correlation function C( k,  0) may be evaluated using (12). The result in the 
critical limit is 

C (  k, 0) = 2&( 1 +Cj)/[(l +$’+ 121 (34) 

thus cancelling the diverging factor tT in (32). Taking the inverse transform of (33), 
and using (34) in (32), we have that 

gi(t) = Gi(u, k: 4) only for i = m, c, 

and is therefore of the required scaling form (5) with vT = 1 and z = 2. The scaling 
form (4) for the lifetime is clearly obtained using (24). These times are evaluated 
explicitly in the next section. 

4. Evaluation of characteristic times 

The characteristic times T~ are given by 

Ti = t ? i i ( p  = o) ,  i = c , m  (35) 
from (25) and (33) and are evaluated by solving (28), (29) to obtain d‘L’(y, yr; p ) ,  
substituting into (31) and (32), and performing the integrations explicitly for p = O .  
The solution of (28) subject to the boundary conditions (29) is easily constructed. 
The general solution of (28) consists of a particular integral which is the pure chain 
Green function plus a complementary function with two arbitrary constants. These 
are fixed by substitution into (29) yielding the result 
d‘L’(y, y‘; p )  = v - 1  {exp(Lv) - 4’exp(-Lv)}-’[exp[(L- ~y - y ’ ~ )  v ]  

+ 4’ exp[-(L- Iy - y‘l)v]+24 cosh(L- y-  y 7 v I  
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where 

v = (2p + 1)1’*, 4 = ( v -  1) / (  v +  1). (36) 

Setting p = O  in (36) and substituting into (31) and (32), using (34) and (35), yields 
the following expressions for the characteristic times T,, 7,: 

dx cos kx d L  exp(-4L) Jox - I: 2 42{(1+4)2+c2}  
(1 +$ 7, = 5T 

On carrying out the elementary integrations in (37) and (38) we obtain the results 

T,=25~(4+1)/[(4+1)2+cz] (39) 

T ,  = &[( 34 + 4)(4 + 1 ) 2  + c24]/{(4 + 1 )’+ i2}( (i + 2)(  (i + 1). (40) 

The calculation leading to (39), (40) is carried out in appendix 2. An interpretation 
of the above results for the lifetimes T ,  and T ,  is given in § 5. 

5. Interpretation and discussion 

The explicit results, valid at criticality, for T ,  and T,  in (39) and (40) above allow 
us to study the effect on the dynamics produced by the pure to percolation crossover 
as 4‘ = &/tP is increased from zero to infinity. We first note that on setting 4 to zero 
in (39) and (40) we recover the pure chain result 

7, = 7, = 2 5 + /  ( 1 + e*) (41) 

which can be obtained from the original Glauber (1963) solution. Letting 4-+ cc on 
the other hand we obtain 

T,=25;4/(42+c2), T,= 5+(34’+ i 2 ) / 4 ( G 2 +  e*). (42) 

When c = O ,  the result (41) (up to a numerical factor) and (42) (exactly) can be 
derived using domain boundary diffusion arguments. Thig approach was initiated by 
Cordery et a1 (1981) who argued for the pure chain that the decay of correlations at 
low temperatures is dominated by the diffusion of domain boundaries. A measure of 
the correlation function decay time is the time T taken for an average domain, length 
2&, to be destroyed by diffusion of the boundaries. The diffusion rate for a boundary 
to move a single step is of order unity (from the first of equations (13)) and therefore 
T a  5: from simple random walk arguments. The tT dependence of the magnetisation 
decay from a uniformly magnetised initial state, on the other hand, arises from a subtle 
balance of domain boundary diffusion and domain pair creation processes. The domain 
boundary diffusion approach can be extended to the percolation critical regime 4+ CO 

(Harris 1984) where at any instant the spins in the vast majority of segments are 
completely ordered. The dominant process producing segment flip and hence destroy- 
ing spin correlations/initial magnetisation in the chain is found to be the flip of an end 
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spin followed by diffusion of the resulting domain boundary to the other end of the 
segment where it is destroyed, thus having reversed the magnetisation of the segment. 
The rate of end spin flip (two ends) is 1/& from (13) while the rate of success for 
diffusion of a domain boundary initially at an end bond to the other end, where it is 
destroyed, is proportional to l / &  for a segment of length tp (Harris 1984). Then the 
average time T taken for the reversal of the magnetisation of a typic1 segment is given 
by 

7a t&= 5:/4 
in agreement, apart from factors of order unity, with the exact results obtained by 
setting to zero in (42). A more ca_reful calculation based on the above arguments 
(Harris 1984) reproduces the exact k = O  results for T ,  and rc. 

6. Conclusions 

In conclusion, an analytic treatment of Glauber dynamics for the bond-diluted Ising 
chain has been developed and a continuum approximation appropriate at criticality 
was used to establish the expected bicritical dynamic scaling form for the wavevector- 
dependent magnetisation and equilibrium correlation function decay functions. The 
corresponding lifetimes were evaluated and are found to be in agreement with the 
predictions of calculations based on the diffusion of domain boundaries. The dynamic 
crossover which occurs as the statics crosses over from the pure to the percolation 
regime is identified as a crossover from pure diffusion of existing domain boundaries, 
and for the magnetisation decay, bulk spin flip creating a pair of domain boundaries, 
to boundary creation at the ends of segments by end spin flips, and the subsequent 
reversal of the segment spin by the diffusion of these boundaries across the segment. 
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Appendix 1. Correlation function decay in a bond-disordered chain 

In general, the time-dependent single spin magnetisation on a single configuration of 
a bond-disordered chain, with Hamiltonian (8), can be written in the form 

( A l . l )  

where GI,( t )  is the Green function for the particular bond configuration of the chain. 
We now show that the following corresponding form holds for the correlation function 
C[k(t’, t )  defined in (20): 



682 C K Harris 

q j k ( f ‘ )  is the two spin equal time correlation function defined in (7). Clearly, 
r 1 

(A1.3) 

where P({u~u’} ,  t ’ )  =probability that spin configuration is { U }  at time t +  t’ given { U ’ }  

at time t’. Using ( A l . l )  we may write 

(A1.4) 

Substituting (A1.4) into (A1.3) yields the result (A1.2). In equilibrium q j k ( t ’ )  is 
independent of t’, and is just v ’ ~ - ’ ’  for k and j both lying within the same segment of 
a bond-diluted chain and zero’otherwise. Hence the result (21) follows. 

Appendix 2. Evaluation of characteristic times 

We carry out the evaluation of the integrals in (37) and (38) to derive the results (39) 
and (40). Making the transformation of variables 

x = y - y’, y” = y 
in (37) and carrying out the integration over y“ we obtain 

7, = 25&j2 lom dx(cos k;) exp(-x) dL exp(-&)(l-  x). (A2.1) lxm 
Similarly, evaluation of the integrals over y and y’  in (38) yields the result 

X lxm dL exp(-@L)([L-$+ xL- x - ~ ’ ] e - ~  +$exp[- (2L- x)]}. (A2.2) 

The remaining integrals in (A2.1) and (A2.2) may be evaluated in a simple way by 
using the following easily proved result 

a‘(a + b)-‘(m + r ) !  i n!  r !  a”+’(a + b),+’ ,=0 

l omdxxm exp(-bx) n ! m !  
d L L “  exp(-aL)= 

(A2.3) 

where m and n are integers 2 0 and Re(a  + b )  > 0. Writing cos h as Re(exp[-ik;c]) 
in (A2.1) and (A2.2) and using (A2.3) we obtain 

7, = 25$Re{[(4+ 1 +iL)-’ + @(@ + 1 +ic)-2] - @(@ + 1 + i i)-2} (A2.4) 

- $ @ ( @ + 1 + i ~ ) - ’ + [ ( @ + 1 + i ~ ) - 2 + 2 @ ( @ + 1 + i ~ ) - 3 ~  

- @ ( @ + 1 + i ~ ) - 2 - 2 @ ( @ + 1 + i ~ ) - 3 + @ 2 ( 2 + @ ) . - ’ ( ~ + 1 + i ~ ) - ’ } .  (A2.5) 

Simplification of the RHS of (A2.4) and (A2.5) yields the results (39) and (40) 
respectively. 
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